

Journal of Organometallic Chemistry 531 (1997) 87-90

Synthesis of the first organometallic gold(I) derivatives of *m*-carborane: crystal structure of $[Au_2(\mu-1,7-C_2B_{10}H_{10})(PPh_3)_2] \cdot 1/2CH_2Cl_2$

Olga Crespo ^a, Mª Concepción Gimeno ^a, Peter G. Jones ^b, Antonio Laguna ^{a,*}

^a Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain ^b Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, D-38023 Braunschweig, Germany

Received 6 June 1996; revised 19 July 1996

Abstract

The treatment of $1,7-C_2B_{10}H_{12}$ with "BuLi followed by addition of two equivalents of [AuCK(PR₃)] gives the dimetallated species [Au₂(µ-1,7-C₂B₁₀H₁₀X(PR₃)₂], where the *m*-carboranyl ligand bridges the two AuPR₃⁺ fragments. The crystal structure of [Au₂(µ-1,7-C₂B₁₀H₁₀X(PPh₃)₂] has been established by X-ray diffraction.

Keywords: Gold(I); Organometallic derivatives; m-Carborane

1. Introduction

The synthesis of carboranyl derivatives has been extensively studied, because in some respects they resemble organic compounds with electron-accepting groups [1–4]. During the past decade investigations in the field of C-substituted carboranes have involved the creation of new models to be used in theoretical investigations [5], the preparation of organic and organometallic carboranyl compounds for the production of polymeric materials [6–8], and biological and medical investigations [9]. These compounds have proved particularly useful in boron neutron capture therapy (BNCT) for cancer [10–13].

Although a few transition metal complexes containing the carboranyl group have been described, examples of *closo*-carboranes bonded to gold by 2c-2e σ -bonds are relatively rare (as opposed to the more widely studied *nido*-carborane derivatives interacting with gold via cluster bonding) [14-18]. The first report was made by Mitchell and Stone [19], who prepared the complexes [Au(2-R-1,2-c_B10H10)(PPh3)] (R = H, Me, Ph), one of which has been structurally characterized [20]. Since then two more reports have dealt with σ -bonded gold carborane derivatives, one by Reid and Welch [21] who prepared the complexes [Au(2-R-1,2-c_B10H10)]

2. Results and discussion

The reaction of $1,7-C_2B_{10}H_{12}$ with ^a BuLi in diethyl ether at 0 °C followed by the addition of two equivalents of [AuCl(PR₃)] leads, after work-up, to the doubly metallated species [Au₂(µ-1,7-C₂B₁₀H₁₀)(PR₃)₂] [PR₃ = PPh₃ (1), PPh₂Me (2), PPh₂(*p*-tol) (3)] (Scheme 1).

Complexes 1–3 are white solids readily soluble in CHCl₃, CH₂Cl₂, Et₂O and THF. They are moderately stable in air and in solution; their thermal stability is lower than that of the *b*-carboranyl derivatives mentioned above. They behave as non-conductors in acctone solutions. The IR spectra show absorption bands arising from the carborane moiety; the stretching vibrations of the B–H bonds appear as a broad absorption at ca. 2590 cm⁻¹. ¹H NMR spectra of 1–3 show resonances due to the phenyl protons and complexes 2 and 3 also show singlets arising from the methyl protons. The hydrogens stateched to the boron atoms of the carborane

Corresponding author. Tel.: + 34-76-761185; Fax: + 34-76-761187; e-mail: alaguna@msf.unizar.es.

 $⁽R = CH_2OCH_3, Ph; L = PPh_3, P(o-tol)_3, PCy_3, PEt_3, AsPh_3)$ and the recently published work by Hawthorne and coworkers [22] where the dimetallated species of the *o*-carborane and bis(*o*-carborane) are synthesized. However, no studies have dealt with the *m*-carborane. Therefore, as part of our studies with carborane derivatives [23-27], we report on the synthesis of organometallic gold(1) derivatives of *m*-carborane.

⁰⁰²²⁻³²⁸X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. Pll S0022-328X(96)06702-2

i) 2 ⁿBuLJ, ii) 2 [AuCi(PR₃)]. PR₃ = PPh₃ (1). PPh₂Me (2). PPh₂(p-tol) (3) Scheme 1.

cage are usually very broad and appear as a slight protuberance in the baseline between 1 and 3 ppm. The ³¹ P[¹H] NMR spectra show only one singlet, because of the equivalence of the phosphorus atoms. There is a displacement in the chemical shift to higher frequency ($\Delta = 5-7$ ppm) compared with the chemical shift for the [AuCl(PR₃)] precursors. The positive-ion mass spectra (FAB) present the molecular peaks for complexes 1 and 2 with coincident experimental and isotopical distribution at m/z = 1061 (17%) and 936 (15%) respectively; this peak does not appear for compound 3. In ali cases the most intense peak corresponds to [Au(PR₃)].

The molecular structure of 1 has been determined by X-ray diffraction and is shown in Fig. 1. Selected bond lengths and angles are collected in Table 1 and atomic coordinates in Table 2. The molecule possesses two gold(phosphine) units bridged by the carboranyl moiety; each gold atom is bonded to one phosphorus and one carbon atom with angles very close to linearity, 179.3(2) and 174.1(2)°. These values are very similar to those found in the o-carborane derivative $[Au_{-}(\mu-1,2)]$ C₂B₁₀H₁₀)(PPh₃)₂] [178.9(4) and 174.2(4)°]. The lack of distortion around the gold centres together with a very long Au-Au distance, 5.74 Å, precludes an aurophilic interaction. The Au-C bond lengths are 2.054(7) and 2.047(7) Å, similar to those found in [Au(2-H-1,2- $C_2 B_{10} H_{10}$ (PPh₃) [2.039(8) Å] [20], [Au(2- CH_2OCH_3)-1,2- $C_2B_{10}H_{10}$)(AsPh_3)] [2.039(8)Å] [21]

Table 1 Selected bond lengths [Å] and angles [°]

Sciected bond rengins [A] and angles []					
Au(1)C(1)	2.054(7)	Au(1)-P(1)	2.265(2)		
Au(2)C(7)	2.047(7)	Au(2)-P(2)	2.271(2)		
P(1)-C(31)	1.808(4)	P(1)-C(21)	1.812(4)		
P(1)-C(11)	1.826(4)	P(2)-C(51)	1.813(4)		
P(2)-C(41)	1.813(4)	P(2)-C(61)	1.820(4)		
C(1)-Au(1)-P(1)	179.3(2)	C(7)-Au(2)-P(2)	174.1(2)		
C(31)-P(1)-C(21)	106.3(2)	C(31)-P(1)-C(11)	105.7(3)		
C(21)-P(1)-C(11)	104.9(2)	C(31)-P(1)-Au(1)	112.1(2)		
C(21)-P(1)-Au(1)	113.8(2)	C(11)-P(1)-Au(1)	113.3(2)		
C(51)-P(2)-C(41)	105.3(2)	C(51)-P(2)-C(61)	107.1(2)		
C(41)-P(2)-C(61)	106.2(2)	C(51)-P(2)-Au(2)	117.2(2)		
C(41)-P(2)-Au(2)	112.1(2)	C(61)-P(2)-Au(2)	108.4(2)		

and $[Au_2(1,2-C_2B_{10}H_{10})(PPh_3)_2]$ [2.055(14), 2.033(15) Å] [22]. It has been shown that the Au-C distances depend on the hybridisation state of the carbon atom, e.g. for C(sp³) the range is 2.09-2.13 Å, for C(sp²) 2.05-2.09 Å, and finally for C(sp) 1.97-2.01 Å. The distances found in the o-carboranyl and mcarboranyl derivatives described by us are clearly characteristic values of a carbon with sp² hybridisation, as was pointed out from the study of the IR and ¹³C NMR spectroscopic data of carboranes [20]. These short Au-C bond distances suggest that this bond is stronger than other gold-carbon orbonds, which supports Stone's observations that the unusual stability of auracarboranes is attributed to the electron-withdrawing influence of the carboranyl cage. Similar stability has been observed in gold-perfluoroalkyl complexes, and the Au-C distances are only slightly longer than those commented on here, but still in the range for a carbon with sp² hybridisation [28-31]. However, it is Welch's belief that the shortness of the Au-C bond is due to efficient σ-donor properties of the carborane and that the carborane does not function as an electron-withdrawing group.

Fig. 1. Molecular structure of the complex $[Au_2(1,7-C_2B_{10}H_{10})(PPh_3)_2]$ in the crystal showing the atom numbering scheme. Radii are arbitrary; H atoms are omitted for clarity.

Table 2 Atomic coordinates $[\times 10^4]$ and equivalent isotropic displacement parameters $[Å^2 \times 10^3]$

Atom	x	у	z	U _{eq}
Au(1)	2187.3(3)	4972.2(2)	6685.9(2)	34.2(1)
Au(2)	2287.7(3)	1922.5(2)	3783.8(2)	32.2(1)
P(1)	2744(2)	6301(2)	6932.2(14)	32.8(4)
P(2)	3139(2)	1298(2)	2197.2(12)	30.8(4)
C(I)	1841(5)	7011(4)	8124(3)	38(2)
C(12)	2008(5)	6435(4)	8963(4)	56(2)
C(13)	1301(6)	6921(5)	9890(3)	71(3)
C(14)	427(5)	7984(5)	9978(3)	67(3)
C(IS)	260(5)	8561(4)	9139(4)	62(2)
C(16)	967(5)	8074(4).	8212(3)	49(2)
C(21)	4311(3)	5802(4)	6899(4)	32(2)
C(22)	5148(4)	4855(4)	6349(4)	47(2)
C(23)	6368(4)	4472(4)	6271(4)	51(2)
C(24)	6751(3)	5036(4)	6743(4)	49(2)
C(25)	5914(4)	5083(4)	7793(4)	50(2)
C(26)	4603(4)	6367(3)	7371(3)	45(2)
C(20)	2577(5)	7256(4)	6020(4)	37(2)
C(31)	1524(4)	7722(5)	5760(4)	50(2)
C(32)	1329(4)	8569(5)	5005(4)	65(2)
C(33)	2102(6)	0027(4)	A673(A)	71(3)
C(35)	2195(0)	8651(5)	4073(4)	67(3)
C(35)	3430(4)	7815(5)	5507(4)	48(2)
C(30)	2150(4)	- 45(3)	2086(4)	33(2)
C(41)	3130(4)	-43(3)	2000(4)	33·2) 40(2)
C(42)	2033(4)	101(3)	2233(4)	45,(2) 52(2)
C(43)	1900(4)	- 1113(4)	2230(4)	52(2)
C(45)	3000(3) A11(A)	-2072(3) -2015(3)	2120(4)	57(2)
C(45)	411(4)	-2013(3)	17/7(4)	J7(2)
C(40)	2454(5)	2127(4)	1730(4)	40(2)
C(51)	2434(3)	2137(4)	292(2)	33(2)
C(52)	2/10(4)	2442(4)	200(2)	40(2)
C(55)	2238(3)	2443(4)	- 300(3)	40(2)
C(54)	1333(0)	3341(4)	- 31(4)	09(3)
C(55)	1209(3)	3938(3)	1654(2)	55(2)
C(50)	1/30(3)	3230(4)	1304(3)	33(2)
C(01)	4/20(3) 6241(4)	1133(4)	1/01(3)	31(2)
C(02)	5541(4)	(90(4)	2442(3)	43(2)
C(03)	0302(4)	030(3)	2155(5)	49(2)
C(04)	(170(3)	812(5)	F02(2)	53(2)
C(03)	6337(4)	1140(3)	JU2(3)	34(2)
C(00)	3330(4)	1300(4)	(91(3)	41(2)
	1090(0)	3737(0)	6577(6)	29.0(13)
D(2)	2044(7)	2/09(7)	5377(0) 6934(6)	36(2)
D(3)	230.401	2430(7)	7402(6)	30(2)
D(4)	190(7)	3633(7)	7493(0) 6627(6)	32(2)
D(3)	100(7)	4060(7)	0027(0)	20(2)
B(0)	1293(7)	3/19(1)	5455(0) (220(c)	20(2)
	109/(0)	2424(0)	5220(5)	29.7(15)
D(8)	2389(8)	1393(8)	7201(6)	35(2)
D(9)	1202(8)	1009(7)	7201(0)	34(2)
B(10)	- /8(8)	28/9(/)	(U/I(0) 5900(4)	34(2)
B(11) B(12)	191(/)	3200(7)	JOU9(0)	30(2)
D(12)	80/(8) 6672(7)	1041(/)	43(4)	202(2)
CI .	3313(1)	3093(4)	43(4)	203(3)

 U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

The Au-P distances, 2.265(2) and 2.271(2) Å, are of the same order as those in organogold complexes of the type [AuR(PPh₃)] and as that in the carboranyl derivative [2.271(2) Å]. There are no interactions with the boron or hydrogen atoms of the carborane cage.

3. Experimental

Infrared spectra were recorded in the range 4000– 200 cm⁻¹ on a Perkin–Elmer 883 spectrophotometer using Nujol mulls between polyethylene sheets. Conductivities were measured in ca. 5×10^{-4} mol dm⁻³ solution with a Philips 9509 conductimeter. C and H analyses were carried out with a Perkin–Elmer 2400 microanalyzer. Mass spectra were recorded on a VG autospec, with the FAB technique, using nitrobenzyl alcohol as matrix. NMR spectra were recorded on a Varian 300 Unity and Bruker ARX 300 spectrometer in CDCl₃. Chemical shifts are cited relative to 85% H₃PO₄ (external, ³¹P) and SiMe₄ (external, ¹H). [AuCl(PR₃)] was prepared following literature procedures [32] and 1,7-C₂B₁₀H₁₂ was purchased from Dexsil Corporation.

3.1. $[Au_2(\mu-1,7-C_2B_{10}H_{10})(PR_3)_2]$ $[PR_3 = PPh_3$ (1), PPh₂Me (2), PPh₂(p-tol) (3)]

To a solution of 1,7-C₂B₁₀H₁₂ (0.014g, 0.1 mmol) in diethyl ether (20 cm³) at 0°C and under nitrogen atmosphere was added "BuLi (0.32 cm³, 0.62 M, 0.2 mmol). After stirring the mixture for 30 min $[AuCl(PR_3)]$ [PR_3 = PPil_3, 0.098 g; PPh₂Me, 0.086 g; PPh₂(p-tol), 0.102 g; 0.2 mmol] was added. The suspension was stirred for 45 min at room temperature and then filtered over Celite. Concentration of the solution to ca. 5 cm³ and addition of n-hexane (15 cm³) gave complexes 1 (63% yield), 2 (58% yield) or 3 (61% yield) as white solids. 1: Anal. Found: C, 42.55; H, 4.10. C₃₈H₄₀Au₂B₁₀P₂ Calc.: C, 43.0; H, 3.8%. A_M $4 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$. NMR (CDCl₃): ³¹P(¹H) (121 MHz) δ 40.5(s). 2: Anal. Found: C, 36.5; H, 4.05. $C_{28}H_{36}Au_2B_{10}P_2$ Calc.: C, 35.9: H, 3.9%. A_M 2 Ω^{-1} cm² mol⁻¹. NMR (CDCl₃): ¹H (300 MHz) δ 2.02 [d, 6H, Me, J(PH) 9.04 Hz], 7.4-7.6 (m, 20H. Ph); ³¹P[¹H] (121 MHz) δ 23.8(s). 3: Anal. Found: C, 43.95; H, 4.15. C₄₀H₄₄Au₂B₁₀P₂ Calc.: C, 44.15; H, 4.1%. $Λ_{\rm M}$ 3 Ω⁻¹ cm² mol⁻¹. NMR (CDCl₃): ¹H (300 MHz) δ 2.52 (s, 6H, Me), 7.3-7.6 (m, 28H, Ph); ³¹P{¹H} (121 MHz) δ 38.9(s).

3.2. Crystal structure determination of complex 1

3.2.1. Crystal data

1 · 1/2CH₂Cl₂, C_{38.5}H₄₁Au₂B₁₀ClP₂, $M_r = 1103.44$, triclinic, space group *P* i, a = 12.725(3), b = 13.348(3), c = 14.496(3) Å, $\alpha = 82.85(2)$, $\beta = 69.46(2)$, $\gamma = 66.08(2)^\circ$, U = 2107.2(8) Å³, Z = 2, $D_c = 1.739$ Mg m⁻³, λ (Mo K α) = 0.71073 Å, $\mu = 7.12$ mm⁻¹, *F*(000) = 1054, $T = -100^{\circ}$ C.

3.2.2. Data collection and reduction

Single crystals were obtained by a slow diffusion of n-hexane into a dichloromethane solution of complex 1. An amber prism $0.40 \times 0.30 \times 0.20$ mm³ was used to collect 8398 intensities to $2\theta_{max}$ 50° (Siemens R3 diffractometer, monochromated Mo K α radiation) of which 7437 were independent ($R_j = 0.019$). An absorption correction based on Ψ -scans was applied with transmission factors 0.5–0.98. Cell constants were refined from setting angles of 50 reflections in the range 2θ 20–23°.

3.2.3. Structure solution and refinement

The structure was solved by the heavy-atom method and subjected to full-matrix least-squares refinement on F^2 (sHELXL-93) [33]; Au, P, Cl atoms were refined anisotropically, others isotropically with idealised phenyl groups; borane H atoms were included using a riding model. The complex crystallizes with half a molecule of dichloromethane disordered over a symmetry centre and poorly resolved; only the chlorine atom was refined. Refinement proceeded to $wR(F^2)$ 0.086 for 7437 reflections and 166 parameters, conventional R(F) 0.034, $S(F^2) = 1.021$, maximum $\Delta \rho 1.78 e Å^{-3}$.

4. Supplementary material available

Full details of the structure determination (complete bond lengths and angles, H-atom coordinates, thermal parameters, structure factors) have been deposited at the Fachinfornationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany. Any request for this material should quote a full literature citation and the reference number CSD-404772.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (No. PB94-0079) and the Fonds der Chemischen Industrie for financial support.

References

- [1] R.N. Grimes, Carboranes, Academic Press, New York, 1970.
- [2] D.S. Matteson, J. Organomet. Chem., 207 (1981) 13.

- [3] Gmelin Handbook of Inorganic Chemistry, 3rd Supplement, Vol. 4, Springer, Berlin, 8th edn., 1988.
- [4] V.I. Bregadze, Chem. Rev., 92 (1992) 209.
- [5] S. Wu and M. Jones, Jr., Inorg. Chem., 27 (1988) 2005.
- [6] M. Mayes, J. Greene and M.S. Cohen, J. Polym. Sci. A, 5 (1967) 365.
- [7] S. Papetti, B.B. Schaeffer, A.P. Grey and T.L. Heying, J. Polym. Sci. A, 4 (1966) 1623.
- [8] D.A. Brown, H.M. Colquhoun, J.A. Daniels, J.A.H. MacBride, I.R. Stephenson and K. Wade, J. Mater. Chem., 2 (1992) 793 and references cited therein.
- [9] R.J. Paxton, B.G. Beatty, M.F. Hawthorne, A. Varadarajan, L.E. Williams, F.L. Curtis, C.B. Knobler and J.E. Shively, *Proc. Nat. Acad. Sci. USA*, 88 (1991) 3387.
- [10] R.F. Barth, A.H. Soloway and R.G. Fairchild, Cancer Res., 50 (1990) 1061.
- [11] K. Shelly, D.A. Feakes, M.F. Hawthorne, P.G. Schmidt, T.A. Krisch and W.F. Bauer, Proc. Nat. Acad. Sci. USA, 89 (1992) 9039.
- [12] M.F. Hawthome, Pure Appl. Chem., 63 (1991) 327.
- [13] M.F. Hawthorne, Angew. Chem., 32 (1993) 950.
- [14] J.A.K. Howard, J.C. Jeffery, P.A. Jellis, T. Sommerfeld and F.G.A. Stone, J. Chem. Soc., Chem. Commun., (1991) 1664.
- [15] J.C. Jeffery, P.A. Jellis and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1993) 1073.
- [16] J.C. Jeffery, P.A. Jellis and F.G.A. Stone, Inorg. Chem., 32 (1993) 3943.
- [17] J.C. Jeffery, P.A. Jellis and F.G.A. Stone, Organometallics, 13 (1994) 2651.
- [18] J.C. Jeffery, P.A. Jellis and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1994) 25.
- [19] C.M. Mitchell and F.G.A. Stone, J. Chem. Soc., Chem. Commun., (1970) 1263.
- [20] T.V. Baukova, L.G. Kuz'mina, N.V. Dvortsova, M.A. Porai-Koshits, D.M. Kravtsov and E.G. Perevalova, Organomet. Chem. USSR, 2 (1989) 580.
- [21] B.D. Reid and A.J. Welch, J. Organomet. Chem., 438 (1992) 371.
- [22] D.E. Harwell, M.D. Mortimer, C.B. Knobler, F.A.L. Anet and M.F. Hawthorne, J. Am. Chem. Soc., 118 (1996) 2679.
- [23] O. Crespo, M.C. Gimeno, A. Laguna and P.G. Jones, J. Chem. Soc., Dalton Trans., (1992) 1601.
- [24] O. Crespo, M.C. Gimeno, P.G. Jones and A. Laguna, J. Chem. Soc., Chem. Commun., (1993) 1696.
- [25] E. Bembenek, O. Crespo, M.C. Gimeno, P.G. Jones and A. Laguna, Chem. Ber., 127 (1994) 835.
- [26] O. Crespo, M.C. Gimeno, P.G. Jones and A. Laguna, *Inorg. Chem.*, 33 (1994) 6128.
- [27] O. Crespo, M.C. Gimeno. P.G. Jones and A. Laguna, Inorg. Chem., 35 (1996) 1361.
- [28] L.G. Vaughan and W.A. Sheppard, J. Am. Chem. Soc., 91 (1969) 6151.
- [29] R.S. Nyholm and P. Royo, J. Chem. Soc., Chem. Commun., (1969) 421.
- [30] R. Usón and A. Laguna, Coord. Chem. Rev., 70 (1986) 1.
- [31] A. Laguna and M.C. Gimeno, Trends Organomet. Chem., (1994) 1.
- [32] R. Usón and A. Laguna, Inorg. Synth., 21 (1982) 71.
- [33] G.M. Sheldrick, SHELXL-93, A Program for Crystal Structure Refinement, University of Göttingen, Germany, 1993.